

Pyclarity-lims

Pyclarity-lims is a fork of genologics [https://github.com/SciLifeLab/genologics] that we have extended and modified.
Most of the initial logic still applies and the genologics module still exists as an alias for backward compatibility.
However there are a few backward incompatible changes that have had to be made.

[image: _images/pyclarity-lims.svg]
 [https://pypi.python.org/pypi/pyclarity-lims][image: _images/pyclarity-lims1.svg]
 [https://pypi.python.org/pypi/pyclarity-lims][image: _images/master.svg]
 [https://travis-ci.org/EdinburghGenomics/pyclarity-lims][image: _images/pyclarity-lims2.svg]
 [https://github.com/EdinburghGenomics/pyclarity-lims/issues][image: _images/badge.svg]
 [https://coveralls.io/github/EdinburghGenomics/pyclarity-lims]
Table of Contents:

	Installation

	Getting started
	Lims connection

	Searching the Lims

	Retrieving object with their id

	Lazy loading and caching

	Looking beyond

	Practical Examples
	Change value of a UDF of all artifacts of a Step in progress

	Find all the samples that went through a Step with a specific udf value

	Make sure to have the up-to-date program status

	Create sample with a Specific udfs

	Start and complete a new Step from submitted samples

	Mix samples in a pool using the api

	Creating large number of Samples with create_batch

	Lims object

	Entities

Indices and tables

	Index

	Module Index

	Search Page

Installation

pip install pyclarity-lims

Getting started

pyclarity-lims is a module that will help you access your Basespace-clarity [https://www.genologics.com/clarity-lims/] REST API by parsing the xml the API returns into Python objects.

Lims connection

To create a Lims connection you’ll need to create a Lims object.

from pyclarity_lims.lims import Lims

l = Lims('https://claritylims.example.com', 'username' , 'Pa55w0rd')

The Lims instance is the main object that will interact with the REST API and manage all communications.
There are two way of accessing information stored in the LIMS:

Searching the Lims

The most common way of accessing data from the LIMS is to first perform searches. For example, retrieving all samples from project1 would be:

samples = l.get_samples(projectname='project1')

This will return a list of all Sample objects that belong to project1.

The functions from pyclarity_lims closely match the API search function from Basespace-clarity REST API. For example
get_samples has similar parameters as the
samples end point [https://www.genologics.com/files/permanent/API/latest/rest.version.samples.html] from Basespace-clarity

Retrieving object with their id

In some cases you will know the id or uri of the instance you want to retrieve. In this case you can create the object directly.

Note that you will still need the Lims instance as an argument.

For Example:

from pyclarity_lims.entities import Sample
sample = Sample(l, id='sample_luid')
print(sample.name)

Lazy loading and caching

All entities such as Sample,
Artifact or
Step are loaded lazily which mean that no query will be sent to the REST API
until an attribute of the object is accessed or a method is run.
In the code above:

from pyclarity_lims.entities import Sample
sample = Sample(l, id='sample_luid')
the Sample object has been created but no query have been sent yet
print(sample.name)
accessing the name of the sample triggers the query

To avoid sending too many queries, all Entities that have been retrieved are also cached which means that once the Entity is retrieved it won’t be queried again unless forced.
This makes pyclarity_lims more efficient but also not very well suited for long running process during which the state of the LIMS is likely to change.
You can bypass the cache as shown in Make sure to have the up-to-date program status.

Looking beyond

You can look at some Practical Examples
There are many other search methods available in the Lims and
you can also look at all the classes defined in Entities

Practical Examples

Change value of a UDF of all artifacts of a Step in progress

The goal of this example is to show how you can change the value of a UDF named udfname in all input artifacts.
This example assumes you have a Lims and a process id.

Create a process entity from an existing process in the LIMS
p = Process(l, id=process_id)
Retreive each input artifacts and iterate over them
for artifact in p.all_inputs():
 # change the value of the udf
 artifact.udf['udfname'] = 'udfvalue'
 # upload the artifact back to the Lims
 artifact.put()

In some cases we want to optimise the number of queries sent to the LIMS and make use of the batched query the API offers.

p = Process(l, id=process_id)
This time we create all the Artifact entities and use the batch query to retrieve the content
then iterate over them
for artifact in p.all_inputs(resolve=True):
 artifact.udf['udfname'] = 'udfvalue'
Upload all the artifacts in one batch query
l.batch_put(p.all_inputs())

Note

A batch query is usually faster than the equivalent number of individual queries.
However the gain seems very variable and is not as high as one might expect.

 Lims object

Lims object

	
class pyclarity_lims.lims.Lims(baseuri, username, password, version='v2')

	Bases: object

LIMS interface through which all searches can be performed and Entity instances are retrieved.

	Parameters:

	
	baseuri – Base URI for the GenoLogics server, excluding the ‘api’ or version parts!

	username – The account name of the user to login as.

	password – The password for the user account to login as.

	version – The optional LIMS API version, by default ‘v2’

Example:

Lims('https://claritylims.example.com', 'username' , 'Pa55w0rd')

	
VERSION = 'v2'

	

	
check_version()

	Raise ValueError if the version for this interface
does not match any of the versions given for the API.

	
create_batch(klass, list_kwargs)

	Create using the batch create endpoint. It is only available for Sample and Container entities.

	Parameters:

	
	klass – The class to use when creating the entity
(Sample or
Container)

	list_kwargs – A list of dictionary where each dictionary will be used to create a instance of the klass.
Elements of the dictionary should match the keyword argument in the create method of
Sample or
Container

	Returns:

	A list of the created entities in the same order as the list of kwargs.

	
get(uri, params={})

	GET data from the URI. It checks the status and return the text of response as an ElementTree.

	Parameters:

	
	uri – the uri to query

	params – dict containing the query parameters

	Returns:

	the text of the response as an ElementTree

	
get_artifacts(name=None, type=None, process_type=None, artifact_flag_name=None, working_flag=None, qc_flag=None, sample_name=None, samplelimsid=None, artifactgroup=None, containername=None, containerlimsid=None, reagent_label=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1, resolve=False)

	Get a list of artifacts, filtered by keyword arguments.

	Parameters:

	
	name – Artifact name, or list of names.

	type – Artifact type, or list of types.

	process_type – Produced by the process type, or list of types.

	artifact_flag_name – Tagged with the genealogy flag, or list of flags.

	working_flag – Having the given working flag; boolean.

	qc_flag – Having the given QC flag: UNKNOWN, PASSED, FAILED.

	sample_name – Related to the given sample name.

	samplelimsid – Related to the given sample id.

	artifactgroup – Belonging to the artifact group (experiment in client).

	containername – Residing in given container, by name, or list.

	containerlimsid – Residing in given container, by LIMS id, or list.

	reagent_label – having attached reagent labels.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	resolve – Send a batch query to the lims to get the content of all artifacts retrieved

	
get_batch(instances, force=False)

	Get the content of a set of instances using the efficient batch call.

Returns the list of requested instances in arbitrary order, with duplicates removed
(duplicates=entities occurring more than once in the instances argument).

For Artifacts it is possible to have multiple instances with the same LIMSID but
different URI, differing by a query parameter ?state=XX. If state is not
given for an input URI, a state is added in the data returned by the batch
API. In this case, the URI of the Entity object is not updated by this function
(this is similar to how Entity.get() works). This may help with caching.

The batch request API call collapses all requested Artifacts with different
state into a single result with state equal to the state of the Artifact
occurring at the last position in the list.

	Parameters:

	
	instances – List of instances children of Entity

	force – optional argument to force the download of already cached instances

	
get_container_types(name=None, start_index=None, nb_pages=-1, add_info=False)

	Get a list of container types, filtered by keyword arguments.

	Parameters:

	
	name – name of the container type or list of names.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_containers(name=None, type=None, state=None, last_modified=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1, add_info=False)

	Get a list of containers, filtered by keyword arguments.

	Parameters:

	
	name – Containers name, or list of names.

	type – Container type, or list of types.

	state – Container state: Empty, Populated, Discarded, Reagent-Only.

	last_modified – Since the given ISO format datetime.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_file_contents(id=None, uri=None, encoding=None, crlf=False, binary=False)

	Download and returns the contents of the file of <ID> or <uri>.

	Parameters:

	
	id – the id of the file to retrieve.

	uri – the uri of the file to retrieve.

	encoding – When retrieve text file, this option can specify the encoding of the file.

	crlf – When set to True the text file will be replace \r\n by \n.

	binary – When set to True the file content is returned as a binary stream.

	Returns:

	The file content in the format specify by the parameters.

	
get_labs(name=None, last_modified=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1, add_info=False)

	Get a list of labs, filtered by keyword arguments.

	Parameters:

	
	name – Lab name, or list of names.

	last_modified – Since the given ISO format datetime.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_process_types(displayname=None, add_info=False)

	Get a list of process types with the specified name.

	Parameters:

	
	displayname – The name the process type

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_processes(last_modified=None, type=None, inputartifactlimsid=None, techfirstname=None, techlastname=None, projectname=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1)

	Get a list of processes, filtered by keyword arguments.

	Parameters:

	
	last_modified – Since the given ISO format datetime.

	type – Process type, or list of types.

	inputartifactlimsid – Input artifact LIMS id, or list of.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	techfirstname – First name of researcher, or list of.

	techlastname – Last name of researcher, or list of.

	projectname – Name of project, or list of.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	
get_projects(name=None, open_date=None, last_modified=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1, add_info=False)

	Get a list of projects, filtered by keyword arguments.

	Parameters:

	
	name – Project name, or list of names.

	open_date – Since the given ISO format date.

	last_modified – Since the given ISO format datetime.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_protocols(name=None, add_info=False)

	Get a list of existing protocols on the system.

	Parameters:

	
	name – The name the protocol

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_reagent_kits(name=None, start_index=None, nb_pages=-1, add_info=False)

	Get a list of reagent kits, filtered by keyword arguments.

	Parameters:

	
	name – reagent kit name, or list of names.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_reagent_lots(name=None, kitname=None, number=None, start_index=None, nb_pages=-1)

	Get a list of reagent lots, filtered by keyword arguments.

	Parameters:

	
	name – reagent kit name, or list of names.

	kitname – name of the kit this lots belong to

	number – lot number or list of lot number

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	
get_reagent_types(name=None, start_index=None, nb_pages=-1, add_info=False)

	Get a list of reagent types, filtered by keyword arguments.

	Parameters:

	
	name – Reagent type name, or list of names.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_researchers(firstname=None, lastname=None, username=None, last_modified=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1, add_info=False)

	Get a list of researchers, filtered by keyword arguments.

	Parameters:

	
	firstname – Researcher first name, or list of names.

	lastname – Researcher last name, or list of names.

	username – Researcher account name, or list of names.

	last_modified – Since the given ISO format datetime.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_sample_number(name=None, projectname=None, projectlimsid=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1)

	Gets the number of samples matching the query without fetching every
sample, so it should be faster than len(get_samples())

	
get_samples(name=None, projectname=None, projectlimsid=None, udf={}, udtname=None, udt={}, start_index=None, nb_pages=-1)

	Get a list of samples, filtered by keyword arguments.

	Parameters:

	
	name – Sample name, or list of names.

	projectlimsid – Samples for the project of the given LIMS id.

	projectname – Samples for the project of the name.

	udf – dictionary of UDFs with ‘UDFNAME[OPERATOR]’ as keys.

	udtname – UDT name, or list of names.

	udt – dictionary of UDT UDFs with ‘UDTNAME.UDFNAME[OPERATOR]’ as keys
and a string or list of strings as value.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	
get_udfs(name=None, attach_to_name=None, attach_to_category=None, start_index=None, nb_pages=-1, add_info=False)

	Get a list of udfs, filtered by keyword arguments.

	Parameters:

	
	name – name of udf

	attach_to_name – item in the system, to wich the udf is attached, such as
Sample, Project, Container, or the name of a process.

	attach_to_category – If ‘attach_to_name’ is the name of a process, such as ‘CaliperGX QC (DNA)’,
then you need to set attach_to_category=’ProcessType’. Must not be provided otherwise.

	start_index – first element to retrieve; start at first element if None.

	nb_pages – number of page to iterate over. The page size is 500 by default unless configured otherwise
in your LIMS. 0 or negative numbers returns all pages.

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
get_uri(*segments, **query)

	Return the full URI given the path segments and optional query.

	Parameters:

	
	segments – arguments creating the uri

	query – kwargs creating the query

	
get_workflows(name=None, add_info=False)

	Get a list of existing workflows on the system.

	Parameters:

	
	name – The name of the workflow you’re looking for

	add_info – Change the return type to a tuple where the first element is normal return and
the second is a dict of additional information provided in the query.

	
parse_response(response, accept_status_codes=[200])

	Parse the XML returned in the response.
Raise an HTTP error if the response status is not 200.

	
post(uri, data, params={})

	POST the serialized XML to the given URI.
Return the response XML as an ElementTree.

	
put(uri, data, params={})

	PUT the serialized XML to the given URI.
Return the response XML as an ElementTree.

	
put_batch(instances)

	Update multiple instances using a single batch request.

	Parameters:

	instances – List of instances children of Entity

	
route_artifacts(artifact_list, workflow_uri=None, stage_uri=None, unassign=False)

	Take a list of artifacts and queue them to the stage specified by the stage uri. If a workflow uri is specified,
the artifacts will be queued to the first stage of the workflow.

	Parameters:

	
	artifact_list – list of Artifacts.

	workflow_uri – The uri of the workflow.

	stage_uri – The uri of the stage.

	unassign – If True, then the artifact will be removed from the queue instead of added.

	
tostring(etree)

	Return the ElementTree contents as a UTF-8 encoded XML string.

	
upload_new_file(entity, file_to_upload)

	Upload a file and attach it to the provided entity.

	
validate_response(response, accept_status_codes=[200])

	Parse the XML returned in the response.
Raise an HTTP error if the response status is not one of the
specified accepted status codes.

	
write(outfile, etree)

	Write the ElementTree contents as UTF-8 encoded XML to the open file.

 Entities

Entities

	
class pyclarity_lims.entities.Artifact(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Any process input or output; analyte or file.

	
concentration

	_

	
container

	The container where the artifact is located, or None

	
files

	List of files associated with the artifact.

	
get_state()

	Parse out the state value from the URI.

	
input_artifact_list()

	Returns the input artifact ids of the parent process.

	
location

	The Artifact’s location in a container.

	
name

	The name of the artifact.

	
output_type

	The output-type of the Artifact

	
parent_process

	The parent process that generated this artfact.

	
qc_flag

	The qc-flag applied to the Artifact.

	
reagent_labels

	List of Reagent labels associated with the artifact.

	
samples

	List of Samples associated with this artifact.

	
state

	Parse out the state value from the URI.

	
stateless

	Return the artifact independently of its state

	
type

	The type of the artifact: Analyte, ResultFile or SharedResultFile.

	
udf

	Dictionary of UDFs associated with the artifact.

	
volume

	_

	
workflow_stages

	List of workflow stage Steps that this artifact ran through.

	
workflow_stages_and_statuses

	List of tuples containing three elements (A, B, C) where:

	A is a Step this artifact has run through.

	B is the status of said Step.

	C the name of the Step.

	
working_flag

	The working-flag of the Artifact.

	
class pyclarity_lims.entities.Container(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Container for analyte artifacts.

	
get_placements()

	Get the dictionary of locations and artifacts
using the more efficient batch call.

	
name

	Name of the container

	
occupied_wells

	Number of wells occupied in the container.

	
placements

	Dictionary of placements in a Container. The key is the location such as “A:1” and the value is the artifact in that well/tube.

	
state

	State of the container. e.g. Populated

	
type

	Type of the container.

	
udf

	Dictionary of UDFs associated with the container.

	
udt

	Dictionary of UDTs associated with the container.

	
class pyclarity_lims.entities.Containertype(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Type of container for analyte artifacts.

	
calibrant_wells

	If there are any wells on this container that are use for calibration. They would be defined here.

	
name

	Name of the type of container (Tube, 96 well plates, …)

	
unavailable_wells

	If there are any well on this container that should not be used. They would be defined here.

	
x_dimension

	Number of position on the x axis

	
y_dimension

	Number of position on the y axis

	
class pyclarity_lims.entities.Entity(lims, uri=None, id=None, _create_new=False)

	Bases: object

Base abstract class for every entity in the LIMS database.
An Entity corresponds to an XML document and as such it should have at least a uri or an id.

	
classmethod create(lims, **kwargs)

	Create an instance from attributes then post it to the LIMS

	
get(force=False)

	Get the XML data for this instance.

	
id

	Return the LIMS id; obtained from the URI.

	
post()

	Save this instance with POST

	
put()

	Save this instance by doing PUT of its serialized XML.

	
uri

	

	
class pyclarity_lims.entities.File(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

File attached to a project or a sample.

	
attached_to

	The uri of the Entity this file is attached to

	
content_location

	The location of the file on the server

	
is_published

	Whether the file is published or not

	
original_location

	The original location of the file when it was uploaded

	
class pyclarity_lims.entities.Lab(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

A lab is a list of researchers.

	
billing_address

	Billing address of the lab

	
externalids

	List of external identifiers associated with the lab

	
name

	Name of the lab

	
shipping_address

	Shipping address of the lab

	
udf

	Dictionary of UDFs associated with the Lab

	
udt

	Dictionary of UDTs associated with the Lab

	
website

	URL to the lab website

	
class pyclarity_lims.entities.Note(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Note attached to a project or a sample.

	
content

	The content of the note

	
class pyclarity_lims.entities.Process(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Process (instance of Processtype) executed producing ouputs from inputs.

	
all_inputs(unique=True, resolve=False)

	Retrieving all input artifacts from input_output_maps.
If unique is true, no duplicates are returned.

	Parameters:

	
	unique – boolean specifying if the list of artifacts should be uniqued

	resolve – boolean specifying if the artifacts entities should be resolved through a batch query.

	Returns:

	list of input artifacts.

	
all_outputs(unique=True, resolve=False)

	Retrieving all output artifacts from input_output_maps.
If unique is true, no duplicates are returned.

	Parameters:

	
	unique – boolean specifying if the list of artifacts should be uniqued

	resolve – boolean specifying if the artifact entities should be resolved through a batch query.

	Returns:

	list of output artifacts.

	
analytes()

	Retrieving the output Analytes of the process, if existing.
If the process is not producing any output analytes, the input
analytes are returned. Input/Output is returned as an information string.
Makes aggregate processes and normal processes look the same.

	
date_run

	The date at which the process was finished in format Year-Month-Day i.e. 2016-12-05.

	
files

	List of files associated with the sample.

	
input_output_maps

	List of tuples (input, output) where input and output item are dictionaries representing the input/output.
Keys of the dict can be:

	for the input:

	post-process-uri: input Artifact

	uri: input Artifact

	limsid: lims id of the input artifact

	parent-process: Process that generated this input

	for the output:

	uri: output Artifact

	limsid: id of the Artifact generated

	output-generation-type: type of output generation (example: PerInput)

	output-type: type of artifact generated (Analyte, or ResultFile)

	
input_per_sample(sample)

	Getting all the input artifacts derived from the specified sample

	Parameters:

	sample – the sample name to check against

	Returns:

	list of input artifacts matching the sample name

	
output_containers()

	Retrieve all unique output containers

	
outputs_per_input(inart, ResultFile=False, SharedResultFile=False, Analyte=False)

	Getting all the output artifacts related to a particular input artifact

	Parameters:

	
	inart – input artifact id or artifact entity use to select the output

	ResultFile – boolean specifying to only return ResultFiles.

	SharedResultFile – boolean specifying to only return SharedResultFiles.

	Analyte – boolean specifying to only return Analytes.

	Returns:

	output artifact corresponding to the input artifact provided

	
parent_processes()

	Retrieving all parent processes through the input artifacts

	
process_parameter

	Parameter for the process

	
protocol_name

	The name of the protocol

	
result_files(output_generation_type=None)

	Retrieve all output artifacts where output-type is ResultFile.

	Parameters:

	output_generation_type – string specifying the output-generation-type (PerAllInputs or PerInput)

	Returns:

	list of output artifacts.

	
shared_result_files(output_generation_type=None)

	Retrieve all output artifacts where output-type is SharedResultFile.

	Parameters:

	output_generation_type – string specifying the output-generation-type (PerAllInputs or PerInput)

	Returns:

	list of output artifacts.

	
step

	Retrieve the Step corresponding to this process. They share the same id

	
technician

	The researcher that started the step.

	
type

	The type of the process

	
udf

	Dictionary of UDFs associated with the process.

Note that the UDFs cannot be modify in Process. Use Step details
to modify UDFs instead. You can access them with process.step.details.udf

	
udt

	Dictionary of UDTs associated with the process.

	
class pyclarity_lims.entities.Processtype(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

	
name

	Name of the process type.

	
class pyclarity_lims.entities.Project(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Project concerning a number of samples; associated with a researcher.

	
close_date

	The date at which the project was closed in format Year-Month-Day i.e. 2016-12-05.

	
externalids

	List of external identifiers associated with the project

	
files

	List of files attached to the project

	
invoice_date

	The date at which the project was invoiced in format Year-Month-Day i.e. 2016-12-05.

	
name

	The name of the project.

	
open_date

	The date at which the project was opened in format Year-Month-Day i.e. 2016-12-05.

	
researcher

	The researcher associated with the project.

	
udf

	Dictionary of UDFs associated with the project

	
udt

	Dictionary of UDTs associated with the project

	
class pyclarity_lims.entities.Protocol(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Protocol, holding ProtocolSteps and protocol-properties

	
properties

	List of dicts describing the protocol’s property.

	
steps

	List of steps

	
class pyclarity_lims.entities.ProtocolStep(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Steps key in the Protocol object

	
epp_triggers

	List of dicts describing the EPP trigger attached to this step.

	
name

	Name of the step

	
permitted_containers

	List of names for the permitted container type in that step.

	
queue

	The queue associated with this protocol step. The link is possible because they share the same id.

	
queue_fields

	List of dicts describing the fields available in that step’s queue.

	
sample_fields

	List of dicts describing the field available in that step’s sample view.

	
step_fields

	List of dicts describing the fields available in that step’s UDF.

	
step_properties

	List of dicts describing the properties of this step.

	
type

	Processtype associated with this step.

	
class pyclarity_lims.entities.Queue(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Queue of a given workflow stage

	
artifacts

	List of artifacts associated with this workflow stage.

	
queued_artifacts

	List of artifacts associated with this workflow stage
alongside the time they’ve been added to that queue and the container they’re in.
The list contains tuples organised in the form (A, B, (C, D)), where:

	A is an artifact

	B is a datetime object,

	C is a container

	D is a string specifying the location such as “1:1”

	
class pyclarity_lims.entities.ReagentKit(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Type of Reagent with information about the provider

	
archived

	Whether the reagent kit is archived or not

	
name

	Name of the reagent kit

	
supplier

	Supplier for the reagent kit

	
website

	Website associated with the reagent kit

	
class pyclarity_lims.entities.ReagentLot(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Information about a particular regaent lot used in a step

	
created_by

	Researcher that created that lot.

	
created_date

	The date at which the lot was created in format Year-Month-Day i.e. 2016-12-05.

	
expiry_date

	The date at which the lot expires in format Year-Month-Day i.e. 2016-12-05.

	
last_modified_by

	Researcher that last modified this lot.

	
last_modified_date

	The date at which the lot was last modified in format Year-Month-Day i.e. 2016-12-05.

	
lot_number

	Lot number

	
name

	Name of the reagent lot

	
reagent_kit

	Reagent kit associated with this lot.

	
status

	Status of the lot.

	
usage_count

	Number of times the lot was used.

	
class pyclarity_lims.entities.ReagentType(lims, uri=None, id=None)

	Bases: pyclarity_lims.entities.Entity

Reagent Type, usually indexes for sequencing

	
category

	Reagent category associated with the type

	
name

	Name of the reagent type.

	
class pyclarity_lims.entities.Reagent_label(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Reagent label element

	
reagent_label

	The reagent label

	
class pyclarity_lims.entities.Researcher(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Person; client scientist or lab personnel. Associated with a lab.

	
email

	Email of the researcher

	
externalids

	List of external identifiers associated with the researcher

	
fax

	Fax number of the researcher

	
first_name

	First name of the researcher

	
initials

	Initials of the researcher

	
lab

	Lab associated with the researcher

	
last_name

	Last name of the researcher

	
name

	Complete name of the researcher

	
phone

	Phone number of the researcher

	
udf

	Dictionary of UDFs associated with the researcher

	
udt

	Dictionary of UDTs associated with the researcher

	
class pyclarity_lims.entities.Sample(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Customer’s sample to be analyzed; associated with a project.

	
artifact

	Initial Artifact associated with the sample.

	
classmethod create(lims, container, position, **kwargs)

	Create an instance of Sample from attributes then post it to the LIMS

	
date_completed

	The date at which the sample was completed in format Year-Month-Day i.e. 2016-12-05.

	
date_received

	The date at which the sample was received in format Year-Month-Day i.e. 2016-12-05.

	
externalids

	List of external identifiers associated with the sample

	
files

	List of files associated with the sample.

	
name

	Name of the sample.

	
notes

	List of notes associated with the sample.

	
project

	The project associated with that sample.

	
submitter

	The researcher who submitted this sample.

	
udf

	Dictionary of UDFs associated with the sample.

	
udt

	Dictionary of UDTs associated with the sample.

	
class pyclarity_lims.entities.Stage(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Holds Protocol/Workflow

	
index

	Position of the stage in the protocol.

	
name

	Name of the stage.

	
protocol

	Protocol associated with this stage.

	
step

	Step associated with this stage.

	
workflow

	Workflow associated with the stage.

	
class pyclarity_lims.entities.Step(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Step, as defined by the genologics API.

	
actions

	Link to the StepActions entity

	
advance()

	Send a post query to advance the step to the next step

	
available_programs

	List of available programs to trigger.
Each element is a tuple with the name and the trigger uri

	
configuration

	Step configuration associated with the step.

	
classmethod create(lims, protocol_step, inputs, container_type_name=None, reagent_category=None, replicates=1, **kwargs)

	Create a new instance of a Step. This method will start a step from queued artifacts.

	Parameters:

	
	lims – Lims connection object

	protocol_step – the ProtocolStep specifying the step to start.

	inputs – A list of artifacts as input to the step.
These need to be queued for that step for the query to be successful.

	container_type_name – optional name of the type of container that this step use for its output.
if omitted it uses the required type from the ProtocolStep if there is only one.

	reagent_category – optional reagent_category.

	replicates – int or list of ints specifying the number of replicates for each inputs.

	
current_state

	The current state of the step.

	
date_completed

	The date at which the step completed in format Year-Month-DayTHour:Min:Sec, e.g. 2016-11-22T10:43:32.857+00:00

	
date_started

	The date at which the step started in format Year-Month-DayTHour:Min:Sec, e.g. 2016-11-22T10:43:32.857+00:00

	
details

	Link to the StepDetails entity

	
placements

	Link to the StepPlacements entity

	
pools

	Link to the StepPools entity

	
process

	Retrieve the Process corresponding to this Step. They share the same id

	
program_names

	List of available program names.

	
program_status

	Link to the StepProgramStatus entity

	
reagent_lots

	List of reagent lots

	
set_placements(output_containers, output_placement_list)

	Create a new placement for a new step.
This method also modifies the selected containers with the provided output container.
It is meant to be used with a newly created step that does not have a placement yet.

	Parameters:

	
	output_containers – List of Containers
used to store the output artifacts.

	output_placement_list – List of tuples (A, (B, C)) where:

	A is an artifact,

	B is a container,

	C is a string specifying the location in the container such as “1:1”

	
trigger_program(name)

	Trigger a program of the provided name.

	Parameters:

	name – the name of the program.

	Returns:

	the program status.

	Raises:

	ValueError – if the program does not exist.

	
class pyclarity_lims.entities.StepActions(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Actions associated with the end of the step

	
escalation

	

	
next_actions

	
	List of dicts that represent an action for an artifact. They keys of the dict are:

	
	artifact: The artifact associated with this Action

	step: The next step associated with this action

	rework-step: The step associated with this action when the Artifact needs to be requeued

	
	action: The type of action to perform.

	
	leave: Leave the sample in the QC protocol.

	repeat: Repeat this step.

	remove: Remove from workflow.

	review: Request manager review.

	complete: Mark protocol as complete.

	store: Store for later.

	nextstep: Continue to the next step.

	rework: Rework from an earlier step.

	completerepeat: Complete and Repeat

	unknown: The action is unknown.

	
step

	Step associated with the actions.

	
class pyclarity_lims.entities.StepDetails(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Details associated with a step

	
input_output_maps

	List of tuples (input, output) where input and output item are dictionaries representing the input/output.
Keys of the dict can be:

	
	for the input:

	
	post-process-uri: input Artifact

	uri: input Artifact

	limsid: lims id of the input artifact

	parent-process: Process that generated this input

	
	for the output:

	
	uri: output Artifact

	limsid: id of the Artifact generated

	output-generation-type: type of output generation (example: PerInput)

	output-type: type of artifact generated (Analyte, or ResultFile)

	
udf

	Dictionary of UDFs associated with the step

	
udt

	Dictionary of UDTs associated with the step

	
class pyclarity_lims.entities.StepPlacements(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Placements from within a step. Supports POST

	
get_placement_list()

	

	
get_selected_containers()

	

	
placement_list

	List of tuples (A, (B, C)) where:

	A is an artifact

	B is a container

	C is a string specifying the location in the container such as “1:1”

	
selected_containers

	List of containers

	
set_placement_list(value)

	

	
class pyclarity_lims.entities.StepPools(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

	
available_inputs

	List of artifact available for pooling.

Note that adding artifacts to a pool will not remove them from this list until put() is run.

	
pooled_inputs

	Dictionary where the keys are the pool names and the values are tuples (pool, inputs) representing a pool.
Each tuple has two elements:

	an output Artifact containing the pool.

	a tuple containing the input artifacts for that pool.

	
put()

	Save this instance by doing PUT of its serialized XML.

	
class pyclarity_lims.entities.StepProgramStatus(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Status displayed in the step

	
message

	Message returned by the program

	
status

	Status of the program

	
class pyclarity_lims.entities.StepReagentLots(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

	
reagent_lots

	List of ReagentLots

	
class pyclarity_lims.entities.Udfconfig(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Instance of field type (cnf namespace).

	
allow_non_preset_values

	Whether the UDF allows presets.

	
attach_to_category

	_

	
attach_to_name

	Name of entity type the UDF is attached to.

	
first_preset_is_default_value

	Whether the first preset of the UDF is the default value.

	
is_controlled_vocabulary

	Whether the UDF has a controled vocabulary.

	
is_deviation

	Whether the UDF is a deviation.

	
is_editable

	Whether the UDF is editable.

	
name

	Name of the UDF.

	
presets

	List of presets.

	
show_in_lablink

	Whether this UDF will be shown in lablink.

	
show_in_tables

	Whether the UDF can be shown in a table.

	
class pyclarity_lims.entities.Workflow(lims, uri=None, id=None, _create_new=False)

	Bases: pyclarity_lims.entities.Entity

Workflow, introduced in 3.5

	
name

	Name of the workflow.

	
protocols

	List of protocols associated with this workflow.

	
stages

	List of stages associated with this workflow.

	
status

	Status of the workflow.

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyclarity_lims	

 	
 	
 pyclarity_lims.entities	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	actions (pyclarity_lims.entities.Step attribute)

 	advance() (pyclarity_lims.entities.Step method)

 	all_inputs() (pyclarity_lims.entities.Process method)

 	all_outputs() (pyclarity_lims.entities.Process method)

 	allow_non_preset_values (pyclarity_lims.entities.Udfconfig attribute)

 	analytes() (pyclarity_lims.entities.Process method)

 	archived (pyclarity_lims.entities.ReagentKit attribute)

 	
 	Artifact (class in pyclarity_lims.entities)

 	artifact (pyclarity_lims.entities.Sample attribute)

 	artifacts (pyclarity_lims.entities.Queue attribute)

 	attach_to_category (pyclarity_lims.entities.Udfconfig attribute)

 	attach_to_name (pyclarity_lims.entities.Udfconfig attribute)

 	attached_to (pyclarity_lims.entities.File attribute)

 	available_inputs (pyclarity_lims.entities.StepPools attribute)

 	available_programs (pyclarity_lims.entities.Step attribute)

B

 	
 	billing_address (pyclarity_lims.entities.Lab attribute)

C

 	
 	calibrant_wells (pyclarity_lims.entities.Containertype attribute)

 	category (pyclarity_lims.entities.ReagentType attribute)

 	check_version() (pyclarity_lims.lims.Lims method)

 	close_date (pyclarity_lims.entities.Project attribute)

 	concentration (pyclarity_lims.entities.Artifact attribute)

 	configuration (pyclarity_lims.entities.Step attribute)

 	Container (class in pyclarity_lims.entities)

 	container (pyclarity_lims.entities.Artifact attribute)

 	Containertype (class in pyclarity_lims.entities)

 	
 	content (pyclarity_lims.entities.Note attribute)

 	content_location (pyclarity_lims.entities.File attribute)

 	create() (pyclarity_lims.entities.Entity class method)

 	(pyclarity_lims.entities.Sample class method)

 	(pyclarity_lims.entities.Step class method)

 	create_batch() (pyclarity_lims.lims.Lims method)

 	created_by (pyclarity_lims.entities.ReagentLot attribute)

 	created_date (pyclarity_lims.entities.ReagentLot attribute)

 	current_state (pyclarity_lims.entities.Step attribute)

D

 	
 	date_completed (pyclarity_lims.entities.Sample attribute)

 	(pyclarity_lims.entities.Step attribute)

 	date_received (pyclarity_lims.entities.Sample attribute)

 	
 	date_run (pyclarity_lims.entities.Process attribute)

 	date_started (pyclarity_lims.entities.Step attribute)

 	details (pyclarity_lims.entities.Step attribute)

E

 	
 	email (pyclarity_lims.entities.Researcher attribute)

 	Entity (class in pyclarity_lims.entities)

 	epp_triggers (pyclarity_lims.entities.ProtocolStep attribute)

 	escalation (pyclarity_lims.entities.StepActions attribute)

 	
 	expiry_date (pyclarity_lims.entities.ReagentLot attribute)

 	externalids (pyclarity_lims.entities.Lab attribute)

 	(pyclarity_lims.entities.Project attribute)

 	(pyclarity_lims.entities.Researcher attribute)

 	(pyclarity_lims.entities.Sample attribute)

F

 	
 	fax (pyclarity_lims.entities.Researcher attribute)

 	File (class in pyclarity_lims.entities)

 	files (pyclarity_lims.entities.Artifact attribute)

 	(pyclarity_lims.entities.Process attribute)

 	(pyclarity_lims.entities.Project attribute)

 	(pyclarity_lims.entities.Sample attribute)

 	
 	first_name (pyclarity_lims.entities.Researcher attribute)

 	first_preset_is_default_value (pyclarity_lims.entities.Udfconfig attribute)

G

 	
 	get() (pyclarity_lims.entities.Entity method)

 	(pyclarity_lims.lims.Lims method)

 	get_artifacts() (pyclarity_lims.lims.Lims method)

 	get_batch() (pyclarity_lims.lims.Lims method)

 	get_container_types() (pyclarity_lims.lims.Lims method)

 	get_containers() (pyclarity_lims.lims.Lims method)

 	get_file_contents() (pyclarity_lims.lims.Lims method)

 	get_labs() (pyclarity_lims.lims.Lims method)

 	get_placement_list() (pyclarity_lims.entities.StepPlacements method)

 	get_placements() (pyclarity_lims.entities.Container method)

 	get_process_types() (pyclarity_lims.lims.Lims method)

 	get_processes() (pyclarity_lims.lims.Lims method)

 	
 	get_projects() (pyclarity_lims.lims.Lims method)

 	get_protocols() (pyclarity_lims.lims.Lims method)

 	get_reagent_kits() (pyclarity_lims.lims.Lims method)

 	get_reagent_lots() (pyclarity_lims.lims.Lims method)

 	get_reagent_types() (pyclarity_lims.lims.Lims method)

 	get_researchers() (pyclarity_lims.lims.Lims method)

 	get_sample_number() (pyclarity_lims.lims.Lims method)

 	get_samples() (pyclarity_lims.lims.Lims method)

 	get_selected_containers() (pyclarity_lims.entities.StepPlacements method)

 	get_state() (pyclarity_lims.entities.Artifact method)

 	get_udfs() (pyclarity_lims.lims.Lims method)

 	get_uri() (pyclarity_lims.lims.Lims method)

 	get_workflows() (pyclarity_lims.lims.Lims method)

I

 	
 	id (pyclarity_lims.entities.Entity attribute)

 	index (pyclarity_lims.entities.Stage attribute)

 	initials (pyclarity_lims.entities.Researcher attribute)

 	input_artifact_list() (pyclarity_lims.entities.Artifact method)

 	input_output_maps (pyclarity_lims.entities.Process attribute)

 	(pyclarity_lims.entities.StepDetails attribute)

 	
 	input_per_sample() (pyclarity_lims.entities.Process method)

 	invoice_date (pyclarity_lims.entities.Project attribute)

 	is_controlled_vocabulary (pyclarity_lims.entities.Udfconfig attribute)

 	is_deviation (pyclarity_lims.entities.Udfconfig attribute)

 	is_editable (pyclarity_lims.entities.Udfconfig attribute)

 	is_published (pyclarity_lims.entities.File attribute)

L

 	
 	Lab (class in pyclarity_lims.entities)

 	lab (pyclarity_lims.entities.Researcher attribute)

 	last_modified_by (pyclarity_lims.entities.ReagentLot attribute)

 	last_modified_date (pyclarity_lims.entities.ReagentLot attribute)

 	
 	last_name (pyclarity_lims.entities.Researcher attribute)

 	Lims (class in pyclarity_lims.lims)

 	location (pyclarity_lims.entities.Artifact attribute)

 	lot_number (pyclarity_lims.entities.ReagentLot attribute)

M

 	
 	message (pyclarity_lims.entities.StepProgramStatus attribute)

N

 	
 	name (pyclarity_lims.entities.Artifact attribute)

 	(pyclarity_lims.entities.Container attribute)

 	(pyclarity_lims.entities.Containertype attribute)

 	(pyclarity_lims.entities.Lab attribute)

 	(pyclarity_lims.entities.Processtype attribute)

 	(pyclarity_lims.entities.Project attribute)

 	(pyclarity_lims.entities.ProtocolStep attribute)

 	(pyclarity_lims.entities.ReagentKit attribute)

 	(pyclarity_lims.entities.ReagentLot attribute)

 	(pyclarity_lims.entities.ReagentType attribute)

 	(pyclarity_lims.entities.Researcher attribute)

 	(pyclarity_lims.entities.Sample attribute)

 	(pyclarity_lims.entities.Stage attribute)

 	(pyclarity_lims.entities.Udfconfig attribute)

 	(pyclarity_lims.entities.Workflow attribute)

 	
 	next_actions (pyclarity_lims.entities.StepActions attribute)

 	Note (class in pyclarity_lims.entities)

 	notes (pyclarity_lims.entities.Sample attribute)

O

 	
 	occupied_wells (pyclarity_lims.entities.Container attribute)

 	open_date (pyclarity_lims.entities.Project attribute)

 	original_location (pyclarity_lims.entities.File attribute)

 	
 	output_containers() (pyclarity_lims.entities.Process method)

 	output_type (pyclarity_lims.entities.Artifact attribute)

 	outputs_per_input() (pyclarity_lims.entities.Process method)

P

 	
 	parent_process (pyclarity_lims.entities.Artifact attribute)

 	parent_processes() (pyclarity_lims.entities.Process method)

 	parse_response() (pyclarity_lims.lims.Lims method)

 	permitted_containers (pyclarity_lims.entities.ProtocolStep attribute)

 	phone (pyclarity_lims.entities.Researcher attribute)

 	placement_list (pyclarity_lims.entities.StepPlacements attribute)

 	placements (pyclarity_lims.entities.Container attribute)

 	(pyclarity_lims.entities.Step attribute)

 	pooled_inputs (pyclarity_lims.entities.StepPools attribute)

 	pools (pyclarity_lims.entities.Step attribute)

 	post() (pyclarity_lims.entities.Entity method)

 	(pyclarity_lims.lims.Lims method)

 	presets (pyclarity_lims.entities.Udfconfig attribute)

 	Process (class in pyclarity_lims.entities)

 	process (pyclarity_lims.entities.Step attribute)

 	process_parameter (pyclarity_lims.entities.Process attribute)

 	
 	Processtype (class in pyclarity_lims.entities)

 	program_names (pyclarity_lims.entities.Step attribute)

 	program_status (pyclarity_lims.entities.Step attribute)

 	Project (class in pyclarity_lims.entities)

 	project (pyclarity_lims.entities.Sample attribute)

 	properties (pyclarity_lims.entities.Protocol attribute)

 	Protocol (class in pyclarity_lims.entities)

 	protocol (pyclarity_lims.entities.Stage attribute)

 	protocol_name (pyclarity_lims.entities.Process attribute)

 	protocols (pyclarity_lims.entities.Workflow attribute)

 	ProtocolStep (class in pyclarity_lims.entities)

 	put() (pyclarity_lims.entities.Entity method)

 	(pyclarity_lims.entities.StepPools method)

 	(pyclarity_lims.lims.Lims method)

 	put_batch() (pyclarity_lims.lims.Lims method)

 	pyclarity_lims.entities (module)

Q

 	
 	qc_flag (pyclarity_lims.entities.Artifact attribute)

 	Queue (class in pyclarity_lims.entities)

 	
 	queue (pyclarity_lims.entities.ProtocolStep attribute)

 	queue_fields (pyclarity_lims.entities.ProtocolStep attribute)

 	queued_artifacts (pyclarity_lims.entities.Queue attribute)

R

 	
 	reagent_kit (pyclarity_lims.entities.ReagentLot attribute)

